Formation of hydraulic transients in Penstocks and Its Impacts on Different Materials

AUTHORS

Rahul Kumar Garg,Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
Arun Kumar,Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, Uttarakhand 247667, India

ABSTRACT

Hydraulic transients, also referred as water hammer (WH) or pressures surges, is an unsteady flow phenomenon commonly generated in pressurized pipeline systems and hydraulic turbines of the Hydro Power Station (HPS). Significant disturbances in the flow of HPS may cause rapid variations in flow parameters of the fluid system during plant operational conditions such as startup, shutdown, load rejection and acceptances. These disturbances due to the plant operational conditions generate WH, which results undesirable low or high pressures in the penstock. It is normally associated with long penstock, where the pressure wave does not return from the end of the penstock before the closure of valve/turbine fully. Eventually, if not protected rightly, the penstock may rupture and, in some cases, loss of human life may occur. In this paper, a review of the available studies summarizing the effect of hydraulic transients on HPS and its effect on different materials of the penstock. Also new available materials for penstock fabrication such as GRP and HDPE compared with traditional penstock fabrication material like Mild Steel and Concrete.

 

KEYWORDS

Water hammer, Transient flow, Penstock, Materials, Method of Characteristics (MoC)

REFERENCES

[1]     Gulliver J. and Arndt REA, “Hydropower Engineering handbook,” New York: McGraw-Hill, (1991)
[2]     “Welded steel penstocks, engineering monograph,” U.S. Bureau of Reclamation, no.3. Denver, (1967)
[3]     “Steel penstock, ASCE manuals and reports on engineering practice,” American Society of Civil Engineer, no.79. New York, (1993)
[4]     Calamak M, Bozkus Z, and Asce M, “Comparison of performance of two run-of-river plants during transient conditions,” vol.1, pp.624-632, (2013) DOI:10.1061/(ASCE)CF.1943-5509.0000370(CrossRef)(Google Scholar)
[5]     Gordon J l., “Design criteria for exposed hydro penstocks,” Canadian Journal of Civil Engineeriong, vol.5, pp.340-351, (1978)
[6]     Bergant A, Simpson AR, and Tijsseling AS, “Water hammer with column separation: A historical review,” Journal of Fluids and Structures, vol.22, pp.135-171, (2006) DOI:10.1016/j.jfluidstructs.2005.08.008(CrossRef)(Google Scholar)
[7]     Pandey B and Karki A, “Hydroelectric energy, renewable energy and the envoirnment,” CRC PRESS; (2017)
[8]     Mambretti S., “Water hammer simulations,” UK: WIT Press, (2013)
[9]     Chaudhry MH., “Applied hydraulic transients,” Third Edit. USA: Springer; (2013) DOI:10.1007/978-1-4614-8538-4(CrossRef)(Google Scholar)
[10]  Wylie EB, “Streeter V. Fluid Transients,” New York: McGraw-Hill; (1978)
[11]  Evangelisti G., “Water hammer analysis by method of characteristics,” L’ Energia Elettrica, XLVI, Mila,(1969)
[12]  Angus R., “Simple graphical solution for pressure rise in pipes and pump,” Journal of Inst Canada, pp.72-81, (1935)
[13]  Gilgen A, Meier J, and Technik HSR, “Assessing the safety of shut-off element,” Hydropower & Dams, pp.58-64, (2016)
[14]  Roy JK and Basak P., “Water hammer in piped water distribution system : investigation in practical system and protection scheme water hammer in piped water distribution system : investigation in practical system and protection scheme,” Proc. of Int. Conf. on Computing, Communication & Manufacturing, pp.189-200, (2014)
[15]  Wood DJ., “Waterhammer analysis—essential and easy (and efficient),” Journal of Environmental Engineering vol.131, pp.1123-1131, (2005) doi:10.1061/(ASCE)0733-9372(2005)131:8(1123)(CrossRef)(Google Scholar)
[16]  “Civil engineering guidelines for planning and designing hydroelectric developments,” A Technical Report. ASCE; (1989)
[17]  Mays LW., “Hydraulic design handbook,” New Y: McGraw-Hill, (1999) DOI:10.1016/S0065-230X(09)04001-9(CrossRef)(Google Scholar)
[18]  Tijsseling AS and Anderson A, “The Joukowsky equation for fluids and solids,” CASA-Report , 0608, pp.1-11, (2006)
[19]  Ghidaoui MS, Zhao M, McInnis DA, and Axworthy DH, “A review of water hammer theory and practice,” Applied Mechanics Reviews, vol.58, pp.49-76, (2005) DOI:10.1115/1.1828050(CrossRef)(Google Scholar)
[20]  Tullis JP., “Hydraulics of pipelines - pumps, valves, cavitation, transients,” Canada: John Wiley & Sons, Inc.; (1989)
[21]  Stephenson D., “Effects of air valves and pipework on water hammer pressures,” Journal of Transportation Engineering, vol.123, pp.101-106, (1997)
[22]  “American Water Works Association,” Steel pipe: A Guide for Design and Installation, (2004)
[23]  Zaruba J., “Water hammer in pipe-line system,” Prague: Elsevier; (1993)
[24]  Pothof IWM and Karney BW, “Guidelines for transient analysis in water transmission and distribution systems,” Water Loss 2011, pp.1-22, (2012) DOI:10.5772/53944(CrossRef)(Google Scholar)
[25]  Thorley ARD, “Fluid transients in pipeline system,” New York: ASME Press, (2004)
[26]  Adamkowski A., “Analysis of transient flow in pipes with expanding or contracting sections,” Journal of Fluids Engineering, vol.125, pp.716, (2003) DOI:10.1115/1.1593703(CrossRef)(Google Scholar)
[27]  Abbtt M., “An introduction to the method of characteristics,” New York: Elsevier; (1966)
[28]  Asmar N., “Partial differential equations with fourier series and boundry valve problems,” Pearson Prentice Hall, (2005)
[29]  Lathrop KD, “Spatial differencing of the transport equation: Positivity vs. accuracy,” Journal of Computational Physics, vol.4, pp.475-498, (1969) DOI:10.1016/0021-9991(69)90015-1(CrossRef)(Google Scholar)
[30]  Dallali M, Guidara MA, Bouaziz MA, Schmitt C, Haj-Taieb E, and Azari Z, “Accuracy and security analysis of transient flows in relatively long pipelines,” Engineering Failure Analysis vol.51, pp.69-82, (2015) DOI:10.1016/j.engfailanal.2015.03.001(CrossRef)(Google Scholar)
[31]  Drive AB, “Pipelines for water conveyance and drainage,” USA: ASCE; n.d
[32]  Leyland B., “Small hydroelectric engineering practice,” 2014th ed. CRC PRESS, (2014) DOI:10.1201/b16627(CrossRef)(Google Scholar)
[33]  Kumar R and Singal SK, “Penstock material selection in small hydropower plants using MADM methods,” Renewable and Sustainable Energy Reviews, vol.52, pp.240-255, (2015) DOI:10.1016/j.rser.2015.07.018(CrossRef)(Google Scholar)
[34]  Harvey A and Brown A. “Micro-Hydro design manual,” 1993rd ed. London: ITDG Publishing; n.d
[35]  Larson M and Jonsson L., “Elastic properties of pipe materials during hydraulic transients,” Journal of Hydraulic Engineering, vol.117, pp.1317-1331, (1991)
[36]  Soares AK, Covas DI, and Reis LF, “Analysis of PVC pipe-wall viscoelasticity during water hammer,” Journal of Hydraulic Engineering, vol.134, pp.1389-1394, (2008) DOI:10.1061/(ASCE)0733-9429(2008)134:9(1389).(CrossRef)(Google Scholar)
[37]  Duan H-F, Ghidaoui M, Lee PJ, and Tung Y-K., “Unsteady friction and visco-elasticity in pipe fluid transients,” Journal of Hydraulic ResearchOnline) Journal Journal of Hydraulic Research, vol.483, pp.1622-1686, (2010) DOI:10.1080/00221681003726247(CrossRef)(Google Scholar)
[38]  Keramat A, Tijsseling AS, Hou Q, and Ahmadi A, “Fluid-structure interaction with pipe-wall viscoelasticity during water hammer,” Journal of Fluids and Structures, vol.28, pp.434-455, (2012) DOI:10.1016/j.jfluidstructs.2011.11.001(CrossRef)(Google Scholar)
[39]  Ferrante M, Massari C, Brunone B, and Meniconi S, “Experimental evidence of hysteresis in the head-discharge relationship for a leak in a polyethylene pipe,” Journal of Hydraulic Engineering, vol.137, pp.775-780, (2011) DOI:10.1061/(ASCE)Hy.1943-7900.0000360(CrossRef)(Google Scholar)
[40]  Weinerowska-Bords K., “Viscoelastic model of waterhammer in single pipeline problems and questions,” Archives of Hydroengineering and Environmental Mechanics, vol.53, pp.331-351, (2006)
[41]  Covas D, Stoianov I, Ramos H, Graham N, and Maksimovic C, “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients,” Part I—experimental analysis and creep characterization. Journal of Hydraulic Research vol.42, pp.517-532, (2004) DOI:10.1080/00221686.2004.9641221(CrossRef)(Google Scholar)
[42]  Covas D, Stoianov I, Mano J, Ramos H, Graham N, and Maksimović Č., “The dynamic effect of pipe-wall viscoelasticity in hydraulic transients,” Part II — model development , calibration and verification. Engineering vol.43, pp.56-70, (2005) DOI:10.1080/00221686.2004.9641221(CrossRef)(Google Scholar)
[43]  Pezzinga G, Brunone B, Cannizzaro D, Ferrante M, Meniconi S, and Berni A, “Two-dimensional features of viscoelastic models of pipe transients,” Journal of Hydraulic Engineering vol.140, 4014036, (2014) DOI:10.1061/(ASCE)HY.1943-7900.0000891(CrossRef)(Google Scholar)
[44]  Lee PJ, Duan HF, Ghidaoui M, and Karney B, “Frequency domain analysis of pipe fluid transient behavior,” Journal of Hydraulic Research, vol.51, pp.609-622, (2013) DOI:10.1080/00221686.2013.814597(CrossRef)(Google Scholar)
[45]  Rushton DN, “Functional Electrical Stimulation and rehabilitation—an hypothesis,” Medical Engineering & Physics, vol.25, pp.75-78, (2003) DOI:10.1016/S(CrossRef)(Google Scholar)
[46]  Sun C, Pang S., ZHAO Y, and Stubblefield M., “Estimation of water hammer speed in composite pipeline, composite materials: design and analysis,” American Society of Mechanical Enginners, (1998)
[47]  Apollonio C, Covas DIC, de Marinis G, Leopardi A, and Ramos HM, “Creep functions for transients in HDPE pipes,” Urban Water Journal, vol.11, pp.160-166, (2014) DOI:10.1080/1573062X.2012.758295(CrossRef)(Google Scholar)
[48]  Evangelista S, Leopardi A, Pignatelli R, and de Marinis G., “Hydraulic transients in viscoelastic branched pipelines,” Journal of Hydraulic Engineering, 4015016, (2015) DOI:10.1061/(ASCE)HY.1943-7900.0001030(CrossRef)(Google Scholar)
[49]  Mitosek M and Szymkiewicz R., “Wave damping and smoothing in the unsteady pipe flow,” Journal of Hydraulic Engineering, vol.138, pp.619-628, (2012) DOI:10.1061/(ASCE)HY.1943-7900.0000571(CrossRef)(Google Scholar)
[50]  Choon TW, Aik LK, Aik LE, and Hin TT, “Investigation of water hammer effect through pipeline system,” International Journal Advanced Science Engineering Information Technology, vol.2, pp.48-53, (2012) DOI:10.18517/ijaseit.2.3.196(CrossRef)(Google Scholar)
[51]  Mitosek M and Szymkiewicz R., “Reservoir influence on pressure wave propagation in steel pipes,” vol.142, pp.1-5, (2016) DOI:10.1061/(ASCE)HY.1943-7900.0001140(CrossRef)(Google Scholar)
[52]  Mishra S, Singal SK, and Khatod DK, “Effect of variation of penstock parameter on mechanical power,” vol.2, pp.110-114, (2012)
[53]  Adamkowski A and Kwapisz L, “Strength analysis of penstock bifurcations in hydropower plants,” Poland, (2016)
[54]  Kodura A, “An analysis of the impact of valve closure time on the course of water hammer,” Archives of Hydroengineering and Environmental Mechanics, vol.63, pp.35-45, (2016) DOI:10.1515/heem-2016-0003(CrossRef)(Google Scholar)
[55]  Kono Y, Takahiro S, and Yukihito S, “Analysis of penstock fracture by water hammer,” Springer Science+Business Media Dordrecht, pp.165-170, (1992)
[56]  Wahba EM, “On the two-dimensional characteristics of laminar fluid transients in viscoelastic pipes,” Journal of Fluids and Structures, vol.68, pp.113-124, (2017) DOI:10.1016/j.jfluidstructs.2016.10.012(CrossRef)(Google Scholar)
[57]  Ghodhbani A and Haj Taïeb E, A” four-equation friction model for water hammer calculation in quasi-rigid pipelines,” International Journal of Pressure Vessels and Piping, vol.151, pp.54-62, (2017) DOI:10.1016/j.ijpvp.2017.03.001(CrossRef)(Google Scholar)

CITATION

  • APA:
    Garg,R.K.& Kumar,A.(2019). Formation of hydraulic transients in Penstocks and Its Impacts on Different Materials. Journal of Creative Sustainable Architecture & Built Environment, 9(1), 19-34. 10.21742/CSABE.2019.9.1.04
  • Harvard:
    Garg,R.K., Kumar,A.(2019). "Formation of hydraulic transients in Penstocks and Its Impacts on Different Materials". Journal of Creative Sustainable Architecture & Built Environment, 9(1), pp.19-34. doi:10.21742/CSABE.2019.9.1.04
  • IEEE:
    [1] R.K.Garg, A.Kumar, "Formation of hydraulic transients in Penstocks and Its Impacts on Different Materials". Journal of Creative Sustainable Architecture & Built Environment, vol.9, no.1, pp.19-34, Sep. 2019
  • MLA:
    Garg Rahul Kumar and Kumar Arun. "Formation of hydraulic transients in Penstocks and Its Impacts on Different Materials". Journal of Creative Sustainable Architecture & Built Environment, vol.9, no.1, Sep. 2019, pp.19-34, doi:10.21742/CSABE.2019.9.1.04

ISSUE INFO

  • Volume 9, No. 1, 2019
  • ISSN(p):2208-9837
  • ISSN(e):2288-6133
  • Published:Sep. 2019

DOWNLOAD